Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of norbuprenorphine in rats.
نویسندگان
چکیده
The objective of this investigation was to characterize the pharmacokinetic-pharmacodynamic (PK-PD) correlation of buprenorphine's active metabolite norbuprenorphine for the effect on respiration in rats. Following i.v. administration in rats (dose range 0.32-1.848 mg), the time course of the concentration in plasma was determined in conjunction with the effect in ventilation as determined with a novel whole-body plethysmography technique. The PK of norbuprenorphine was best described by a three-compartment PK model with nonlinear elimination. A saturable biophase distribution model with a power PD model described the PK-PD relationship best. No saturation of the effect at high concentrations was observed, indicating that norbuprenorphine acts as a full agonist with regard to respiratory depression. Moreover, analysis of the hysteresis based on the combined receptor association-dissociation biophase distribution model yielded high values of the rate constants for receptor association and dissociation, indicating that these processes are not rate-limiting. In a separate analysis, the time course of the plasma concentrations of buprenorphine and norbuprenorphine following administration of both the parent drug and the metabolite were simultaneously analyzed based on a six-compartment PK model with nonlinear elimination of norbuprenorphine. This analysis showed that following i.v. administration, 10% of the administered dose of buprenorphine is converted into norbuprenorphine. By simulation it is shown that following i.v. administration of buprenorphine, the concentrations of norbuprenorphine reach values that are well below the values causing an effect on respiration.
منابع مشابه
Pharmacokinetics and Pharmacodynamics of Gliclazide from Immediate and Modified Release Formulation Tablets in Rats
The objective of the study was to compare pharmacokinetic and pharmacodynamic parameters of gliclazide after administration of immediate (IR) and modified release (MR) tablets. The experiment included rats with both normoglyceamia and streptozocin (STZ)-induced hyperglyceamia. Several MR formulations were designed and in vitro drug release profile was assessed by a dissolution test. For the fur...
متن کاملPharmacokinetics and Pharmacodynamics of Gliclazide from Immediate and Modified Release Formulation Tablets in Rats
The objective of the study was to compare pharmacokinetic and pharmacodynamic parameters of gliclazide after administration of immediate (IR) and modified release (MR) tablets. The experiment included rats with both normoglyceamia and streptozocin (STZ)-induced hyperglyceamia. Several MR formulations were designed and in vitro drug release profile was assessed by a dissolution test. For the fur...
متن کاملMechanism-based pharmacokinetic-pharmacodynamic modeling of the respiratory-depressant effect of buprenorphine and fentanyl in rats.
The purpose of this investigation was to develop a mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model to predict the time course of respiratory depression following administration of opioids in rats. The proposed model is based on receptor theory and aims at the separate characterization of biophase distribution and receptor association/dissociation kinetics as determinants of hyster...
متن کاملPharmacokinetic-pharmacodynamic modeling of electroencephalogram effect of imipenem in rats with acute renal failure.
The epileptogenic activity of imipenem was investigated in rats with experimental renal failure induced by uranyl nitrate injection by using electroencephalogram (EEG) recording and a pharmacokinetic-pharmacodynamic model including an effect compartment. Results previously obtained with healthy rats were used to estimate the dose of imipenem required to induce an observable but nonlethal EEG ef...
متن کاملPharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect.
Metformin, a commonly used antidiabetic drug, exerts its glucose-lowering effect due to metabolic activities at several sites of action (biophases), including liver, intestine, muscle cells, and adipocytes. The relative contribution of the individual biophases to the overall glucose-lowering effect is not known. Thus, the aims of this investigation were to study the influence of mode of drug ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 321 2 شماره
صفحات -
تاریخ انتشار 2007